
Mastering Modern Linux by Paul S. Wang

Appendix: Pattern Processing with awk

The awk program is a powerful yet simple filter. It processes its input one line at a time,
applying user-specified awk pattern actions to each line. The awk program is similar to,
but more powerful than, sed. The awk mechanisms are based more on the C programming
language than on a text editor, allowing for variables, arrays, conditionals, expressions,
iteration controls, formatted output, and so on. The awk program can perform operations
not possible with sed, such as joining adjacent lines and comparing parts of different lines.

The general form of the awk command is

awk [-Fc] script [file] . . .

The -F option specifies a character c to be the field separator (default white space). The
argument script is an awk script given on the command line or in a file with the -f filename
convention. The files are are processed in the order given. If no files are given, standard
input is used. If a dash (-) is given as a file name, it is taken to mean standard input.

The awk processing cycle is as follows:

1. If there are no more input lines, terminate. Otherwise, read the next input line.

2. Apply all awk pattern commands sequentially as specified in script to the current
line.

3. Go to step (1).

Note that unlike sed, awk does not write lines to the standard output automatically.
An awk script consists of one or more pattern actions given on different lines or separated

by semicolons. Each pattern action takes the form

pattern {action}

If the current line matches the pattern, the action is taken. A missing pattern matches every
line, and a missing action outputs the line. Thus,

ls -l | awk ´/Linux/ ´

is the same as

ls -l | sed -n ´/Linux/p ´

Pattern and action are described more fully in the following subsections.
The concept of a field here is the same as that used for sort: awk delineates each of its

input lines into fields separated by white space or by a field separator character specified
with the -F option. In an awk action, the fields are denoted $1, $2, and so on. The entire
line is denoted by $0.

While it is hard to rearrange the order of fields using sed, it is easy with awk. For
instance, the output of ls -l has eight fields:

-rw-rw---- 2 jsmith 512 Apr 23 21:44 report.tex

-rw-rw---- 1 jsmith 79 Feb 9 15:13 Makefile

-rw-rw---- 2 jsmith 1024 Feb 25 00:13 pipe.c

When the preceding lines are piped through awk,

1

ls -l | awk ´{print $8,$4,$5,$6} ´

The following output is produced:

report.tex 512 Apr 23

Makefile 79 Feb 9

pipe.c 1024 Feb 25

Note that, in this example, the pattern action contains no pattern. Also, actions are always
enclosed between braces ({ and }).

awk Patterns

As with sed, the pattern determines whether or not awk takes an action on the current
line. In fact, a sed address, specified with one or two match expressions, also will work as
an awk pattern. If you are familiar with sed, you already know many useful patterns. For
instance,

/^first/ (first at the beginning of a line)
/last$/ (last at the end of a line)
/^$/ (an empty line)
/[⊘▷][⊘▷]*/ (a line with a string of one or more blanks)
/begin/,/end/ (all lines between a begin match and an end match)

are valid patterns in both sed and awk.
In awk, a pattern is an arbitrary Boolean expression involving regular expressions and

relational expressions. Boolean expressions are formed with && (and), || (or), ! (not), and
parentheses. A regular expression in awk must begin and end with a slash (/) and otherwise
is defined the same as that for egrep (Table ??). Relational expressions are formed using
C-like operators >, >= , <, <=, == (equal), and != (not equal). In addition, a relational
expression can be:

expression ~ re
expression !~ re

where ~ means “contains” and !~ means “does not contain.” For example, the pattern

$1 ~ /GNU/ && $2 ~ /Linux/

is true if the first field contains the string GNU and the second field contains the string Linux.
A pattern may contain two patterns separated by a comma, in which case the action is

applied to all lines beginning with a line matching the first pattern up to and including the
line matching the second pattern (the same as in sed). Thus,

awk ´NR==14,NR==30 ´file

outputs lines 14-30 of file, because awk keeps a running line count in the built-in variable
NR. Other useful built-in variables are listed in Table 0.2.

The special patterns BEGIN and END in

BEGIN {action}
END {action}

specify actions executed before the first input line and after the last input line, respectively.
They are used for initialization and postprocessing when needed.

2

TABLE 0.2 Built-in awk Variables
Variable Meaning
NF Total number of fields on current line
NR Sequence number of current line
FS Input field separator character (default blanks)
RS Input record separator (default newline)
OFS Output field separator string (default space)
ORS Output record separator string (default newline)
OFMT Output format for numbers (default %g as in printf)

awk Actions

Now let’s turn to the question of how actions are specified. An action contains a sequence
of statements given on different lines or separated by semicolons. Possible statements are
as follows:

Assignment: var = expression

Output: print expression [, expression] . . .
printf(. . .) (as in C)

Flow control
(as in C):

if (conditional) statement [else statement]
for(expression; conditional; expression) statement
while (conditional) statement, break, continue

Additional flow
control:

next (skip remaining commands, start next awk cycle)
exit (exit awk)

In the preceding definitions, a statement can be a compound statement in the form

{statement, statement, . . . }

The output statements use the standard output. However, they can be followed by >

"filename" to redirect the output into a file.

awk Expressions

Expressions in awk statements can be constants, variables, arrays, fields, or any combina-
tions of these using the following C operators:

+, -, *, /, %, ++, --, +=, -=, *=, %=

Numerical constants in awk statements are the same as in C. String constants are placed in
double quotation marks ("string") and variables are initialized to the null string. An array
element is denoted as a[i], where i can be an integer or any string. A blank between two
expressions concatenates them into a string. Thus, for example,

awk ´{print $2 ":" $1} ´file

outputs field2:field1 of each line from the given file. Built-in functions (Table 0.3 lists a few)
can also be used in expressions. In awk, conditional expressions use C notation and may
involve awk-defined relational expressions. In Table 0.3, e is an expression, c is a character,
s is a string, and i and j are integers.

3

Index Preparation: An Example

The awk pattern processing program is powerful and involved. The best way to learn it is
through use and experimentation. In this section, we present an example of awk usage to
prepare an index for a document (Ex: ex04/index.awk). Suppose you have several index
files, each containing entries such as (Ex: ex04/index.data)

bash:99

regular expression:155

bash:123

pipe:101

gnome:163

socket:415

pipe:23

where each line has two fields: an index item and a page number separated by the :.
Your goal is to produce an overall index file in alphabetical order with lines such as (Ex:
ex04/index.file)

bash 99,123

gnome 163

pipe 23,101

regular expression 155

socket 415

The first step is to order the entries alphabetically and by page number, which can be done
with

sort -t: --key=1,2.0f --key=2n index.data >| index.tmp

in which the following sort keys are used:

1,2.0f (first key, field one ignoring case)
2n (second key, field two with numerical comparison)

It then remains to collect repeated index items to form lines with multiple page numbers.
Since repeated items will be on consecutive lines, the awk script index.awk (Figure 4) can
be used. To apply the script use

awk -f index.awk index.tmp >| index.file

There are four pattern commands in index.awk. The first command sets the variable i

(used for initialization) to zero. The second command compares $1 with the variable pre,

TABLE 0.3 Built-in awk Functions
Function Meaning

int(e), length(s) Integer (floor), length of string s
gsub(re, s, t) Replaces matches of re in t with s
index(s1,s2) Position of string s2 in s1, zero if s2 not in s1
sprintf(...) Format conversion, same as in the C language
substr(s,i,j) Substring of s of length j from position i
split(s,a,c) Cuts s into substrings a[1] to a[i] at char c; returns i
getline() Inputs next line, returns 0 on end of file, otherwise 1

4

which stands for the previous index item and is initially null. If $1 is equal to pre (field one
is the same as the previous index item), then output the page number ($2), preceded by a
comma. If $1 is not equal to pre (a new index item), then output newline, $1, space, and
$2 except for the very first line where the leading newline is not needed. The conditional
output is performed in the if of the third command which also records the index item ($1)
in the variable pre. At the end of the input file, a final newline is output.

FIGURE 4 Program index.awk for Index Processing

BEGIN { i = 0; }

$1 == pre { printf(",%s", $2); }

$1 != pre { if (i > 0)

{ printf("\n%s %s",$1,$2); }

else

{ printf("%s %s",$1,$2); i = 1; }

pre = $1;

}

END { printf("\n"); }

5

